

Chapter 11: Sound — Detailed Premium Notes

1. What is Sound?

Sound is a form of energy that we can hear. It is produced when an object vibrates. These vibrations travel through a medium such as air, water, or solid, and reach our ears.

For example, when you pluck a guitar string, it vibrates and sets the surrounding air particles in motion. These moving particles carry the sound to your ear — and you hear it.

So, in simple words:

Sound is the energy produced by vibrating objects and heard when it travels through a medium to our ears.

2. Production of Sound

Sound is produced when an object vibrates.

These vibrations cause the particles of the surrounding medium (like air, water, or solids) to vibrate as well, and this vibration travels as sound waves to our ears.

For example:

- *When you pluck a guitar string, it vibrates and produces sound.*
- *When you strike a drum, its stretched membrane vibrates to produce sound.*
- *Even in humans, vocal cords vibrate when we speak.*

In short:

Sound is produced by the vibrations of objects and reaches our ears through a medium.

When we hit the drum, membrane of drum vibrates producing sound.

When we play a guitar, the string on it makes to and fro motion and produces sound.

Sound produced by vibrating prong of tuning fork.

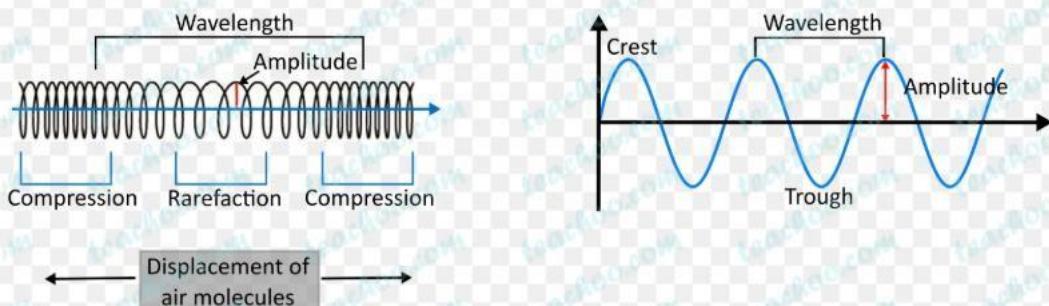
3. Propagation of Sound

The process by which sound travels from its source to our ears is called propagation of sound.

When an object vibrates, it disturbs the nearby particles of the medium (like air). These particles then vibrate back and forth, passing the energy to the next particles.

This continuous transfer of vibration forms a wave that moves through the medium — known as a sound wave.

Types of Waves:


There are two main types of mechanical waves that transfer sound energy:

- 1. Longitudinal Waves** *◦ The particles of the medium vibrate in the same direction as the wave travels.*
 - Sound in air, liquids, and solids travels as longitudinal waves.**
 - These waves consist of:**
 - Compressions → regions where particles are close together**
 - Rarefactions → regions where particles are far apart**

2. Transverse Waves

- **The particles of the medium vibrate at right angles (90°) to the direction of wave travel.**
- **Though sound usually travels as longitudinal waves, transverse waves can form on the surface of solids or on strings (like in guitars or tuning forks).**

Longitude Wave vs Transverse Wave

In Short

Sound propagates through a medium as a mechanical wave, mostly longitudinal in nature, by the vibration of particles that carry the sound energy forward.

4. Characteristics of Sound

Every sound we hear is different. Some are loud, some are soft, some high-pitched, and some deep.

These differences are due to the characteristics of sound.

The main characteristics of sound are:

1. **Amplitude**
2. **Frequency (Pitch)**
3. **Time Period**
4. **Wavelength**
5. **Speed**
6. **Quality (Timbre)**

1. Amplitude – Loudness of Sound

Amplitude is the maximum displacement of vibrating particles from their rest position.

Greater the amplitude → louder the sound.

Smaller the amplitude → softer the sound.

Example: Shouting produces a sound wave with greater amplitude than whispering.

2. Frequency – Pitch of Sound

Frequency is the number of vibrations or waves produced per second.

It is measured in Hertz (Hz).

Higher frequency → higher pitch (shrill sound).

Lower frequency → lower pitch (deep sound).

Example: A girl's voice usually has a higher pitch than a boy's voice.

3. Time Period

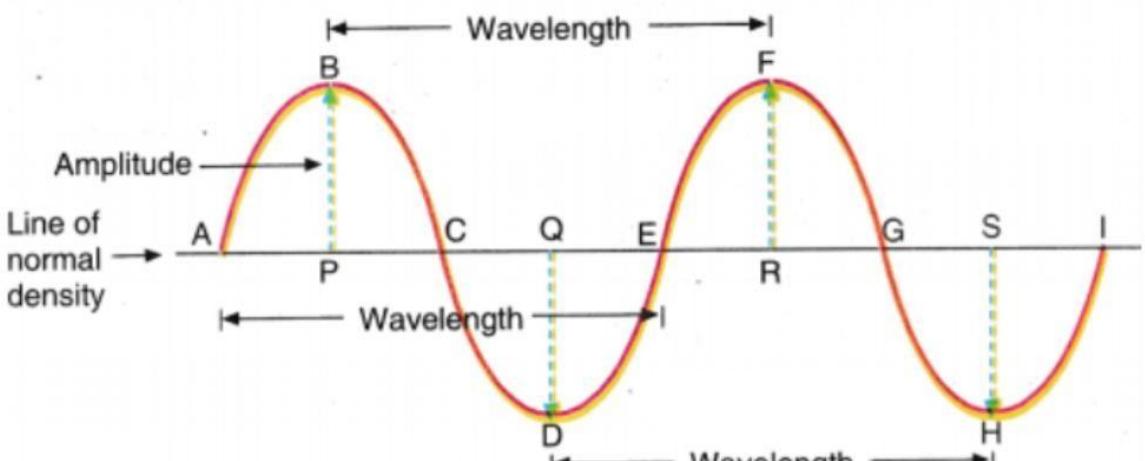
Time period is the time taken for one complete vibration.

It is related to frequency by the formula: Frequency = 1 / Time Period

4. Wavelength

Wavelength is the distance between two consecutive compressions or rarefactions in a sound wave. It is represented by the Greek letter lambda (λ).

5. Speed of Sound


Speed of sound is the distance travelled by sound per unit time. It depends on the medium – sound travels fastest in solids, slower in liquids, and slowest in gases.

6. Quality or Timbre

Quality is the property that helps us distinguish between sounds even if they have the same loudness and pitch.

Example: A guitar and a piano playing the same note sound different because of their different wave patterns.

Characteristics of a sound wave.

5. Speed of Sound

The speed of sound is the distance travelled by a sound wave in one second.

It tells us how fast sound energy moves through a medium. It is given by the formula:

$$\text{Speed} = \text{Distance} / \text{Time}$$

Dependence on Medium

The speed of sound depends on the nature of the medium through which it travels.

Sound needs a material medium like air, water, or solids, and its speed changes in each.

- **Fastest in solids** → because particles are very close together.
- **Slower in liquids** → particles are less tightly packed.
- **Slowest in gases** → particles are far apart.

Approximate Speed of Sound at 25°C

Medium Speed (m/s)

Air 343

Water 1498

Iron 5130

Dependence on Temperature

The speed of sound increases with temperature.

At higher temperatures, particles move faster and transfer vibrations more quickly.

Example:

Sound travels faster in warm air than in cold air.

Dependence on Humidity

When the humidity (moisture) in air increases, the speed of sound also increases.

This happens because water vapour is lighter than dry air, making it easier for sound to travel.

In Short

Speed of sound depends on the medium, temperature, and humidity, and is fastest in solids and slowest in gases.

6. Range of Human Hearing

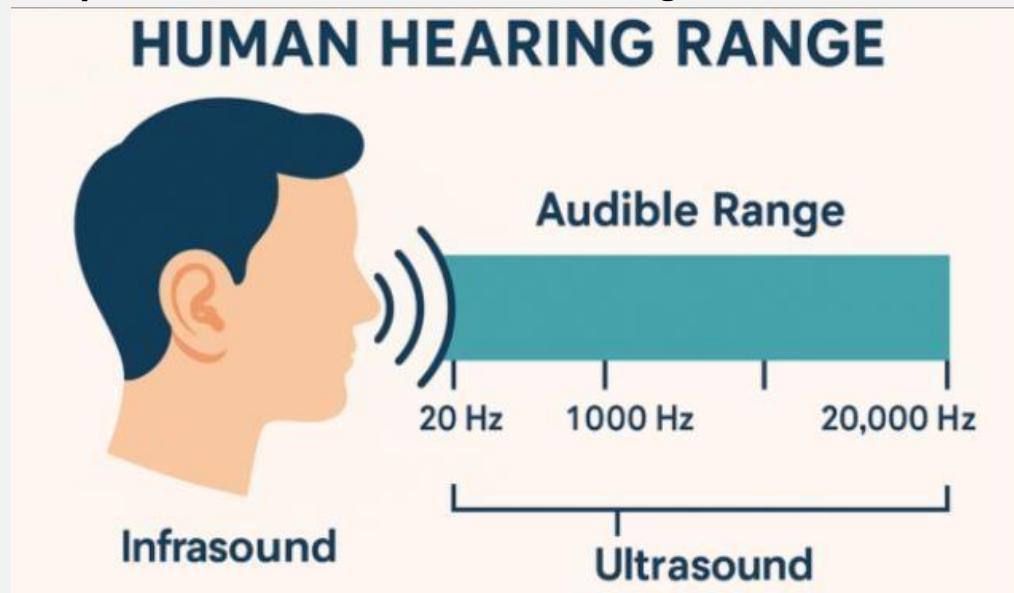
The range of human hearing is the range of sound frequencies that a human ear can hear.

- *Humans can typically hear sounds with frequencies between 20 Hz and 20,000 Hz (20 kHz).*
- *Sounds below 20 Hz are called infrasound (too low to hear).*
- *Sounds above 20,000 Hz are called ultrasound (too high to hear).*

Key Points

1. **Audible Range: 20 Hz – 20,000 Hz**
2. **Infrasound: < 20 Hz → cannot be heard by humans**
3. **Ultrasound: > 20,000 Hz → cannot be heard by humans**

Examples


- **Normal speech: 200 Hz – 4000 Hz**
- **Dog whistle: Above 20 kHz (ultrasound)**
- **Earthquake vibrations: Below 20 Hz (infrasound)**

In Short

Humans can hear sounds in the frequency range of 20 Hz to 20,000 Hz.

Frequencies below or above this range cannot be heard.

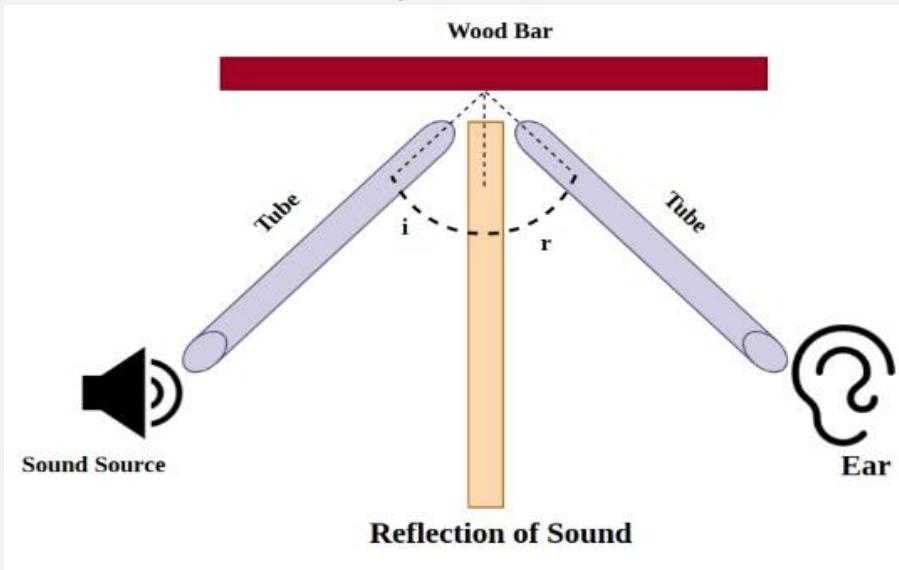
7. Reflection of Sound

Reflection of sound is the bouncing back of sound waves when they hit a hard, smooth surface.

- **Just like light, sound also reflects from surfaces.**
- **The angle of incidence (angle at which sound strikes) is equal to the angle of reflection (angle at which it bounces back).**

Key Points

1. For reflection, the surface should be hard and smooth.
2. Soft or irregular surfaces absorb sound and reduce reflection.
3. Reflected sound can be heard after a short delay, depending on the distance of the reflecting surface.


Examples

- Sound echoing in a mountain valley
- Shouting in a hall with hard walls
- Sound reflection in concert halls to enhance acoustics

In Short

Reflection of sound is the bouncing back of sound waves from a hard surface, following the law of reflection.

8. Applications of Reflection of Sound

The reflection of sound has many practical uses in daily life and technology.

1. Echo

- An echo is the reflected sound heard clearly after a short delay.
- Used in distance measurement and for entertainment in auditoriums.

2. SONAR (Sound Navigation and Ranging)

- SONAR works on the principle of reflection of sound under water.
- It helps in detecting underwater objects, measuring water depth, and locating submarines.

3. Architectural Acoustics

- Reflection of sound is used to design auditoriums, halls, and theaters.
- Proper reflection ensures clear sound reaches every corner.

4. Ultrasound in Medicine

- Medical ultrasound uses reflected sound waves to create images of internal organs.
- Example: Detecting baby in womb or tumors.

5. Megaphones and Musical Instruments

- Certain instruments and devices use reflection to amplify sound.
- Example: Megaphones, guitar bodies, and pianos.

9. Structure of Human Ear

The human ear is the organ responsible for hearing and maintaining balance. It is divided into three main parts:

1. **Outer Ear**
2. **Middle Ear**
3. **Inner Ear**

1. Outer Ear

- **Consists of the pinna (the visible part) and the ear canal.**
- **Pinna collects sound waves and directs them into the ear canal.**
- **Ear canal ends at the eardrum (tympanic membrane), which vibrates when struck by sound waves.**

2. Middle Ear

- **An air-filled chamber containing three tiny bones (ossicles):**
 1. **Malleus (hammer)**
 2. **Incus (anvil)**
 3. **Stapes (stirrup)**
- **These bones amplify vibrations from the eardrum and transmit them to the inner ear.**
- **The Eustachian tube connects the middle ear to the throat and maintains air pressure.**

3. Inner Ear

- **Contains the cochlea (for hearing) and semicircular canals (for balance).**
- **Cochlea converts vibrations into electrical signals that are sent to the brain via the auditory nerve.**
- **Semicircular canals help in maintaining balance and body orientation.**

10. Noise and Music

- **Noise: Unpleasant, irregular, and unwanted sound. It causes irritation and disturbance.**
- **Music: Pleasant, organized sound with definite pitch and rhythm.**

11. Noise Pollution

- **Excessive or unwanted noise in the environment.**
- **Sources include vehicles, industries, loudspeakers, construction sites.**
- **Causes health problems such as hearing loss, stress, and sleep disturbances.**
- **Noise control measures include sound barriers, proper urban planning, and use of ear protection.**

12. Sample Problems

Q: A sound wave has frequency 500 Hz and wavelength 0.68 m. Calculate speed of sound in the medium.

A: Speed, $v = \text{frequency} \times \text{wavelength} = 500 \times 0.68 = 340 \text{ m/s}$

Q: A person claps his hands near a cliff and hears the echo after 4 seconds. If the speed of sound in air is 340 m/s, calculate the distance of the cliff from the person.

A:

- **Time for echo = 4 s (time for sound to go to cliff and come back)**
- **Distance travelled by sound = Speed \times Time = $340 \times 4 = 1360 \text{ m}$**
- **Distance to cliff = $1360 \div 2 = 680 \text{ m}$
 $=680 \text{ m}$**

Q: The highest frequency that a human can hear is 20,000 Hz. If the speed of sound in air is 340 m/s, calculate the wavelength of this sound.

A:

- **Wavelength (λ) = Speed / Frequency**
- **$\lambda = 340 \div 20,000 = 0.017 \text{ m} = 1.7 \text{ cm}$
 $=1.7 \text{ cm}$**