

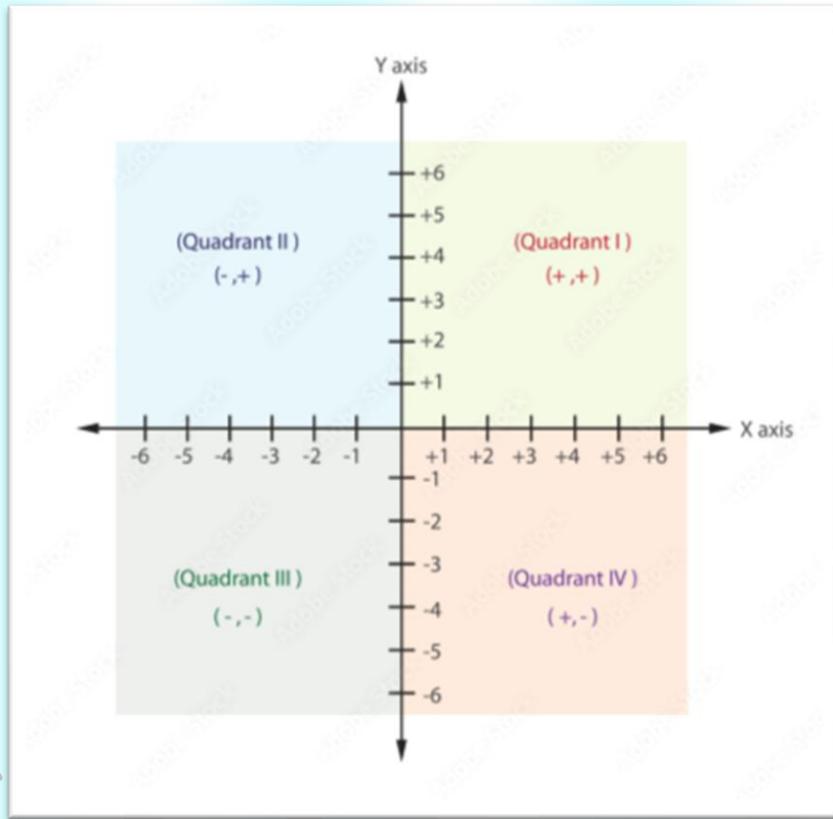
CHAPTER 3: COORDINATE GEOMETRY

YOUR ULTIMATE GUIDE TO MASTERING THE FOUNDATIONS OF MATHEMATICS

1. Introduction to Coordinate Geometry

Coordinate Geometry combines algebra and geometry by representing points on a two-dimensional plane using ordered pairs (x, y) . This helps us find distances, midpoints, and divide line segments using algebraic formulas.

Real-life Connection:


GPS navigation, mapping cities, designing computer graphics, and solving engineering problems rely on coordinate geometry.

2. The Cartesian Plane (Coordinate System)

- **Consists of two number lines intersecting perpendicularly:**
 - **Horizontal: x-axis**
 - **Vertical: y-axis**
- **Their intersection is called the origin with coordinates $(0, 0)$.**
- **The plane divides into four quadrants:**

- **Quadrant I** (+, +)
- **Quadrant II** (-, +)
- **Quadrant III** (-, -)
- **Quadrant IV** (+, -)

3. Coordinates of a Point

- **Point located by an ordered pair (x, y) :**
 - **x (abscissa): horizontal distance from origin**
 - **y (ordinate): vertical distance from origin**

- Coordinates can be positive or negative depending on quadrant.

Example:

Plot points A(3, 4), B(-2, 3), and C(-1, -6) on the Cartesian plane.

Step-by-step plotting:

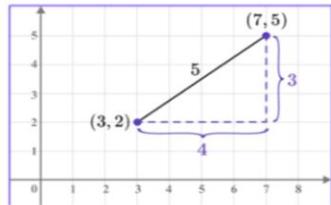
1. Start at origin (0, 0).
2. Move x units right/left.
3. Move y units up/down.
4. Mark and label the point.

4. The Quadrants and Signs of Coordinates

Quadrant	Sign of x	Sign of y	Example Points
I	+	+	(4, 5)
II	-	+	(-3, 3)
III	-	-	(-2, -5)
IV	+	-	(5, -4)

5. Distance Formula

The distance d between points $A(x_1, y_1)$ and $B(x_2, y_2)$ is:


$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Distance Formula

The **distance formula** calculates the distance d between two coordinates (x_1, y_1) and (x_2, y_2) on an xy -coordinate plane.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

 Example Find the distance between the points $(3, 2)$ and $(5, 7)$

$$\begin{aligned} d &= \sqrt{(7 - 3)^2 + (5 - 2)^2} \\ &= \sqrt{4^2 + 3^2} \\ &= \sqrt{16 + 9} \\ &= \sqrt{25} \\ &= 5 \end{aligned}$$

THIRD SPACE LEARNING

Step-by-step Derivation

1. Plot points A and B.
2. Draw perpendicular lines forming a right triangle.
3. Base length = $|x_2 - x_1|$; Height = $|y_2 - y_1|$.
4. Apply Pythagoras theorem:
$$d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$
5. Take square root to find d .

6. Midpoint Formula

The midpoint M of line segment joining $A(x_1, y_1)$ and $B(x_2, y_2)$:

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)$$

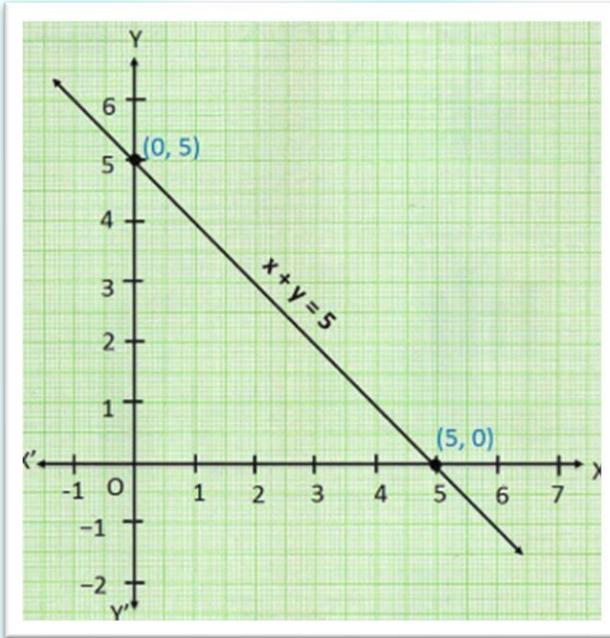
Explanation

- Midpoint divides segment into two equal halves.
- Coordinates are averages of x and y .

7. Section Formula

If P divides segment AB internally in ratio $m:n$:

$$P = \left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n} \right)$$


Internal vs External Division

- Internal: P lies between A and B .
- External: Use subtraction for external division (advanced).

8. Graphing Linear Equations (Basic Introduction)

- Example: $y = 2x + 1$
- Plot points for $x = 0, 1, 2$ and find corresponding y .
- Draw line through plotted points.

You will learn more about this in chapter 4.

9. Examples with Step-by-Step Solutions

Example 1:

Find distance between A (2, 3) and B (5, 7).

Solution:

$$d = \sqrt{(5 - 2)^2 + (7 - 3)^2} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5$$

Example 2:

Midpoint of A(4, 6) and B(10, 8).

Solution:

$$M = \left(\frac{4+10}{2}, \frac{6+8}{2} \right) = (7, 7)$$

Example 3:

Point P divides AB with A(2, 5), B(8, 9) in ratio 3:1. Find P.

Solution:

$$P = \left(\frac{3 \cdot 8 + 1 \cdot 2}{4}, \frac{3 \cdot 9 + 1 \cdot 5}{4} \right) = \left(\frac{26}{4}, \frac{32}{4} \right) = (6.5, 8)$$

10. Practice Questions

1. Plot X (3, -2), Y (-1, 4), Z (-3, -5).
2. Calculate distance between (1, 1) and (4, 5).
3. Find midpoint of (2, 3) and (6, 7).
4. Point divides (0, 0) and (8, 6) in ratio 1:3. Find coordinates.
5. Identify quadrant of (-4, -7).

11. Important StudyBee Tips

- Always draw axes and points before calculating.
- Memorize formulas via frequent revision.

- Carefully maintain positive/negative signs.
- Make notes of common mistakes to avoid repeating.
- Take quizzes on StudyBee.tech for practice.

12. Common Errors to Avoid

- Confusing x and y coordinates.
- Missing signs for points in quadrants II, III, IV.
- Incorrect application of section formula.
- Skipping graphs or rough sketches.
- Ignoring units or scale on axes.

13. Summary of Formulas

Concept	Formula
Distance	$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
Midpoint	$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2} \right)$
Section (Internal)	$\left(\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n} \right)$

14. Why StudyBee?

Join 1000+ students who improved their grades by 20% with our premium, clear, and visual Class 9 notes.

Visit www.studybee.tech for exclusive notes, quizzes, and expert help. StudyBee — Your academic success, our mission.

StudyBee