

CHAPTER 4: LINEAR EQUATIONS IN TWO VARIABLES

YOUR ULTIMATE GUIDE TO MASTERING THE FOUNDATIONS OF MATHEMATICS

1. Introduction to Linear Equations in Two Variables

A linear equation in two variables is an algebraic equation that can be written in the form:

$$ax + by + c = 0$$

where a , b , and c are real numbers and at least one of a or b is not zero.

The variables x and y represent unknowns.

- a and b cannot both be zero simultaneously.
- Both x and y are raised to the power of 1.
- These equations represent a line on a coordinate plane.
- Unlike equations in one variable, such equations have infinitely many solutions.
- Each solution is an ordered pair (x, y) that satisfies the equation.

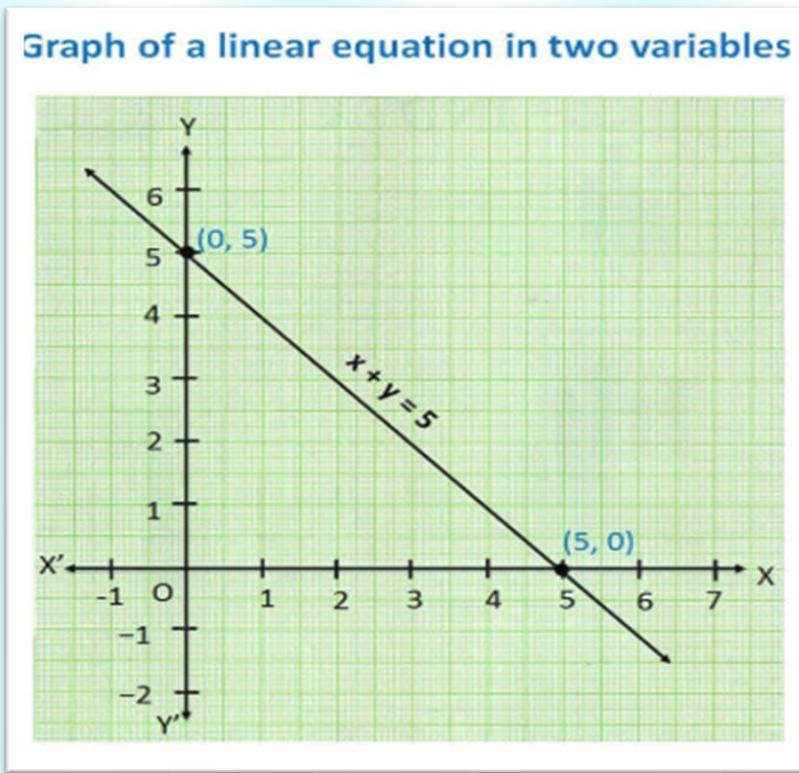
2. Understanding Solutions of Linear Equations in Two Variables

- A solution is a pair (x, y) that, when substituted into the equation, satisfies it.
- To find solutions, assign arbitrary values to one variable and solve for the other.
- Since there are infinitely many such pairs, solutions form a set represented by points on a graph.

Example 1:

Equation: $2x + 3y = 6$

- If $x = 0$, then $3y = 6 \Rightarrow y = 2$
- If $y = 0$, then $2x = 6 \Rightarrow x = 3$


Solutions: $(0, 2), (3, 0)$

3. Graphical Representation

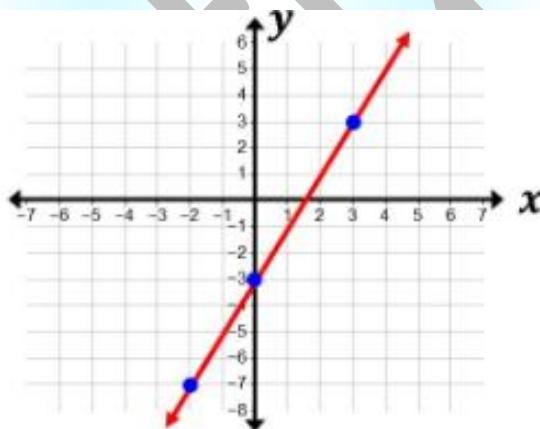
- Plotting the solutions as points on the Cartesian plane creates a straight line.
- This line is called the graph of the equation.
- To plot the graph:
 1. Find at least two solutions (points).
 2. Plot these points on the plane.

3. Draw a straight line through them (extend in both directions).

Vertical and Horizontal Lines:

- An equation like $x = k$ represents a vertical line passing through $x = k$.
- An equation like $y = k$ represents a horizontal line passing through $y = k$.

4. Properties of Linear Equations


- Adding, subtracting, multiplying, or dividing both sides by the same number (except zero) does not change the solution set.
- Two linear equations represent lines that may:
 - Intersect at exactly one point (one unique solution).
 - Coincide (infinitely many solutions).
 - Be parallel (no solution).

5. Methods to Solve Systems of Linear Equations in Two Variables

1. Graphical Method:

Plot both equations and find the intersection point(s).

2. Substitution Method:

Solve one equation for one variable and substitute into the other to find the other variable.

$$x - 2y = 8 \quad (1)$$

$$x + y = 5 \quad (2)$$

From equation (2),

$$x = 5 - y$$

Substitute this value in equation (1),

$$x - 2y = 8$$

$$5 - y - 2y = 8$$

$$5 - 3y = 8$$

$$-3y = 8 - 5$$

$$-3y = 3$$

$$y = -1$$

Put this value in equation (2),

$$x - 1 = 5$$

$$x = 5 + 1$$

$$x = 6$$

$$\therefore x = 6 \text{ and } y = -1$$

3. Elimination Method:

Manipulate equations to eliminate one variable, then solve for the remaining variable.

$x - 2y = 8$ (1)
 $2x + y = 5$ (2)
 Multiply equation (2) by 2,
 $(2x + y = 5) \times 2$
 $4x + 2y = 10$
 Add this equation to equation (1), we get,

$$\begin{array}{r} x - 2y = 8 \\ + 4x + 2y = 10 \\ \hline 5x = 18 \\ x = \frac{18}{5} \end{array}$$

 Put this value in equation (2),
 $y = 5 - 2x$
 $y = 5 - 2 \times \frac{18}{5}$
 $y = 5 - \frac{36}{5}$
 $y = -\frac{11}{5}$
 $\therefore x = \frac{18}{5} \text{ and } y = -\frac{11}{5}$

Step-by-Step Examples

Example 2 (Substitution):

$$3x + 2y = 12 \quad (1) \quad x - y = 3 \quad (2)$$

From (2), express $x = y + 3$. Substitute into (1):

$$3(y + 3) + 2y = 12 \quad 3y + 9 + 2y = 12 \quad 5y = 3 \quad y = \frac{3}{5}$$

Then,

$$x = \frac{3}{5} + 3 = \frac{18}{5}$$

Solution: $(\frac{18}{5}, \frac{3}{5})$

Example 3 (Elimination):

$$2x + 3y = 6 \quad 4x - 3y = 12$$

Add the two equations:

$$6x = 18 \Rightarrow x = 3$$

Substitute $x = 3$ into first equation:

$$2(3) + 3y = 6 \Rightarrow 6 + 3y = 6 \Rightarrow y = 0$$

Solution: $(3, 0)$

5. Graph Plotting Stepwise

For $x + y = 5$:

- Let $x = 0 \Rightarrow y = 5$
- Let $y = 0 \Rightarrow x = 5$

Plot points $(0, 5)$ and $(5, 0)$ and draw the line through them.

6. Special Cases

- Vertical lines: $x = k$
- Horizontal lines: $y = k$

7. Practice Questions

1. Find three solutions and plot for $3x - 4y = 8$.

2. Solve by substitution:

$$x + y = 10 \quad 2x - y = 3$$

3. Graphically represent the solutions for $x = 7$ and $y = -2$.

Benefits of StudyBee for Students

- Expertly crafted notes detailed enough for deep understanding.
- Over 1000 students have achieved 20% grade improvement.
- Instant downloadable PDFs and mobile-friendly materials.
- Exclusive practice quizzes tailored to the latest CBSE syllabus.
- Visit www.studybee.tech for the best academic resources.