

CHAPTER 2: POLYNOMIALS

YOUR ULTIMATE GUIDE TO MASTERING THE FOUNDATIONS OF MATHEMATICS

1. Introduction: Polynomials & Their Importance

A polynomial is an algebraic expression with variables and coefficients, using positive integer exponents only.

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

- Only whole number exponents (not negative, not fractions).
- Used in science, engineering, economics, computers.

Example:

$$4x^3 + 5x^2 - 7x + 10$$

StudyBee Insight:

Understand polynomials to crack tough questions in Boards—and for real-life modeling (like profit, distance, or speed formulas).

2. Terminology: Terms, Degree, and Coefficient

- Term:** Product of coefficient and variable(s) (like $3x^2$).

- **Coefficient:** Number multiplying the variable (3 in $3x^2$).
- **Degree:** Largest exponent of variable in the polynomial (degree = 2 for $3x^2 + 8$).

Table Example:

Expression	Terms	Coefficients	Degree
$5x^2 + 7x + 8$	$5x^2, 7x, 8$	$5, 7, 8$	2

3. Types of Polynomials (by Terms & Degree)

By Number of Terms:

- **Monomial:** One term ($7x$)
- **Binomial:** Two terms ($x + 5$)
- **Trinomial:** Three terms ($x^2 + 3x + 2$)
- **Polynomial:** Four or more terms

By Degree:

- **Constant:** Degree 0 (3)
- **Linear:** Degree 1 ($2x + 1$)
- **Quadratic:** Degree 2 ($x^2 + 4x + 4$)
- **Cubic:** Degree 3 ($x^3 - 8$)

4. Zero and Constant Polynomials

- **Zero Polynomial:** All coefficients zero (0), undefined degree.
- **Constant Polynomial:** Only constant term, no variable (7), degree 0.

5. Algebraic Identities (All NCERT – 9 Major)

1. $(a + b)^2 = a^2 + 2ab + b^2$
2. $(a - b)^2 = a^2 - 2ab + b^2$
3. $a^2 - b^2 = (a - b)(a + b)$
4. $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$
5. $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$
6. $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$
7. $(x + a)(x + b) = x^2 + (a + b)x + ab$
8. $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$
9. $(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

Each identity is explained with step-by-step expansion, common errors, and application examples.

6. Value of a Polynomial

For $p(x)$, substitute value to get $p(k)$. Example:

If $p(x) = x^2 - 5x + 6$, then $p(3) = 3^2 - 5 \times 3 + 6 = 9 - 15 + 6 = 0$.

7. Zeroes (Roots) of Polynomials

Definition: Value of x for which $p(x) = 0$.

Linear Example:

$p(x) = 2x + 3$, solve $2x + 3 = 0 \rightarrow x = -1.5$.

Quadratic Example:

$p(x) = x^2 - 2x - 3$, factor: $(x - 3)(x + 1) = 0 \rightarrow x = 3, -1$.

Cubic Example:

Find zeroes of $x^3 - 6x^2 + 11x - 6$.

Try $x = 1$: $1 - 6 + 11 - 6 = 0 \rightarrow x = 1$ root.

Divide by $(x - 1)$, get quadratic $x^2 - 5x + 6$.

Factor: $(x - 2)(x - 3)$.

Zeroes: $x = 1, 2, 3$.

8. Operations: Addition, Subtraction, Multiplication, Division

Addition/Subtraction: Combine like terms.

Example:

$$(3x^2 + 4x - 2) + (5x^2 - 6x + 8) = 8x^2 - 2x + 6$$

Multiplication: Use distributive property.

Example:

$$(x + 2)(x^2 - 4x + 3) = x^3 - 4x^2 + 3x + 2x^2 - 8x + 6 = x^3 - 2x^2 - 5x + 6$$

Division: Use long division, subtract stepwise remainders.

9. Factorization of Polynomials

Quadratic Factorization:

$$x^2 + 7x + 10 = (x + 5)(x + 2)$$

Cubic Factorization:

Example 1: $x^3 - 8$

$$= x^3 - 2^3 = (x - 2)(x^2 + 2x + 4)$$

Example 2: $x^3 - 4x^2 - 7x + 10$

Try $x = 1$: $1 - 4 - 7 + 10 = 0 \rightarrow$ root $x = 1$

Divide by $(x - 1)$ to get quotient $x^2 - 3x - 10$

Factor quotient: $(x - 5)(x + 2)$

Factorization: $(x - 1)(x - 5)(x + 2)$

10. Remainder & Factor Theorems

Remainder Theorem: Remainder when $p(x)$ divided by $(x - a)$ is $p(a)$.

Factor Theorem: If $p(a) = 0$, $(x - a)$ is a factor.

Example:

Divide $p(x) = x^3 - 3x^2 + 5x - 3$ by $(x - 1)$

$p(1) = 1 - 3 + 5 - 3 = 0 \rightarrow (x - 1)$ is factor.

11. Advanced Concepts: Common Errors, HOTS, Applications

Common Errors:

- Using negative or fractional exponents (not allowed in polynomials)
- Confusing degree with number of terms
- Forgetting middle terms in expansions

HOTS:

- Why at most three roots for cubic?
- Create polynomial for points $(1,2), (2,5)$
- Adjust polynomial for double root at $x=2$

Applications:

- Physics (projectile motion)
- Economics (cost/profit functions)
- Data Science (regression models)

12. Practice Problems

Short Answer:

- Define degree and coefficient with example.
- Give examples: monomial, binomial, polynomial.

Standard Board Questions:

1. Factorize $x^2 - 2x - 8$.
2. Find zeroes of $x^3 - 6x^2 + 11x - 6$.
3. Expand $(a - b)^3$ using identities.

Advanced:

1. Factorize $p(x) = x^3 + 2x^2 - 5x + 6$ using Factor Theorem.
2. Find remainder of $2x^3 - 7x^2 + 6$ divided by $(x - 2)$.
3. Write cubic polynomial with zeroes 2, -3, 4.

13. Why Choose StudyBee for Your Notes?

- **Expert-Curated Content:** Crafted by subject experts, fully aligned with CBSE syllabus and exams.
- **Clarity & Depth:** Detailed, stepwise explanations and worked examples that surpass free resources.
- **Affordable Pricing:** Premium notes at student-friendly prices starting as low as ₹59.

- **Trusted by Toppers:** Widely used and recommended by toppers and teachers across India.

Enhance your learning with StudyBee – clarity and confidence in every note!

StudyBee