

CHAPTER 11: SURFACE AREAS AND VOLUMES

YOUR ULTIMATE GUIDE TO MASTERING THE FOUNDATIONS OF MATHEMATICS

1. Fundamental Concepts

Three-dimensional solids extend 2D shapes into depth, occupying real space unlike flat figures.

Surface Area: Measures outer covering needed for painting or wrapping.

Lateral Surface Area (LSA): Sides only, excluding top/bottom (e.g., cardboard for cylinder sides).

Total Surface Area (TSA): LSA + all bases (complete wrapping).

Volume: Internal space for filling (e.g., water capacity), always cubic units.

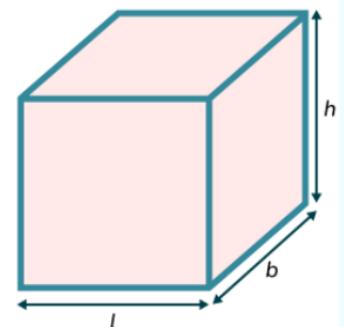
Visual Aid Insight: Imagine nets—unfold a cylinder to 2 circles + rectangle; this reveals why LSA = circumference \times height.

Units: Surface area in m^2/cm^2 ; volume in m^3/cm^3 . Convert consistently (1 m = 100 cm).

2. Cuboid and Cube

Cuboid: Rectangular box with 3 pairs of identical faces (length l , breadth b , height h).

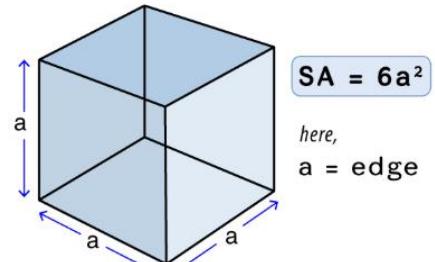
Conceptual Derivation:



- Faces: 2 of lb (top/bottom), 2 of bh (front/back), 2 of hl (sides).
- $\text{TSA} = 2(lb + bh + hl)$ —sum all exposed surfaces.
- $\text{LSA} = 2h(l + b)$ —vertical sides only.
- $\text{Volume} = \text{base area} \times \text{height} = l \times b \times h$.

Cube: Special cuboid where $l = b = h = a$.

- $\text{TSA} = 6a^2$, $\text{LSA} = 4a^2$, $\text{Volume} = a^3$.
- **Why Cube Scales Differently:** Doubling edge quadruples SA but octuples volume—key for material efficiency in packaging.



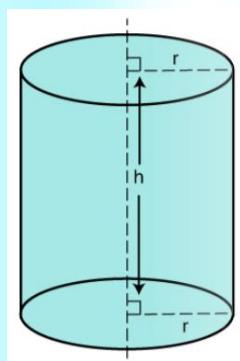
Real-Life: Room painting (TSA minus floor/ceiling), dice volume.

3. Right Circular Cylinder

Concept: Circular bases joined by curved surface; like a tin can.

Derivation:

- $\text{Base circumference} = 2\pi r$.



- Unroll side: rectangle of length $2\pi r$, width $h \rightarrow \text{LSA} = 2\pi r h$.
- $\text{TSA} = \text{LSA} + 2 \text{ bases} = 2\pi r h + 2\pi r^2 = 2\pi r(r + h)$.
- Volume = base area \times height = $\pi r^2 h$.

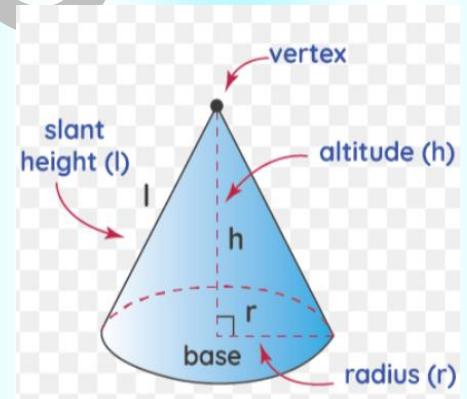
Key Insight: LSA unchanged if rotated—uniform curvature. Use for open-top tanks (TSA = LSA + 1 base).

4. Right Circular Cone

Concept: Circular base tapering to apex; ice cream cone shape.

Derivation:

- Slant height $l = \sqrt{r^2 + h^2}$ (Pythagoras on axial triangle).
- Unroll curved surface: sector with arc $2\pi r$, radius $l \rightarrow \text{CSA} = \pi r l$.
- $\text{TSA} = \text{CSA} + \text{base} = \pi r(l + r)$.
- Volume = $\frac{1}{3} \pi r^2 h$ (1/3 cylinder volume due to triangular cross-section).



Visualization: Slice vertically—isosceles triangle rotated around height.

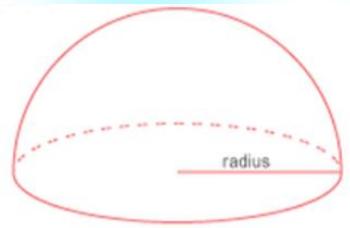
5. Sphere and Hemisphere

Sphere: Perfectly round; no edges or faces.

Derivation Insight: Surface approximated by infinite rings;

TSA = $4\pi r^2$. Volume via integration or Cavalieri's

principle = $\frac{4}{3}\pi r^3$.



Hemisphere: Half-sphere + flat base.

- **CSA** = curved half = $2\pi r^2$.
- **TSA** = **CSA** + **base** = $3\pi r^2$.
- **Volume** = $\frac{2}{3}\pi r^3$.

Application: Globes (TSA minus poles), bowls (hemisphere volume).

6. Composite Solids

Concept: Real objects combine shapes (e.g., tent = cone + cylinder).

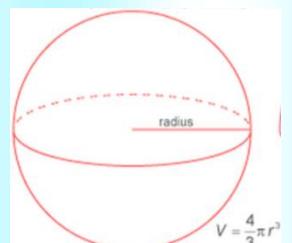
Calculate by addition/subtraction, ignoring hidden surfaces.

Strategy:

1. Sketch and label parts.
2. **TSA:** Exposed surfaces only (subtract overlaps).
3. **Volume:** Sum internal spaces.

Example Breakdown: Cuboidal room with hemispherical dome.

- **TSA:** Cuboid TSA - roof area + hemisphere TSA.
- **Visualize:** Dome base merges with roof—no double base.



7. Complete Formula Reference

Solid	LSA/CSA	TSA	Volume
Cuboid	$2h(l + b)$	$2(lb + bh + hl)$	lbh
Cube	$4a^2$	$6a^2$	a^3
Cylinder	$2\pi rh$	$2\pi r(r + h)$	$\pi r^2 h$
Cone	πrl	$\pi r(l + r)$	$\frac{1}{3}\pi r^2 h$
Sphere	-	$4\pi r^2$	$\frac{4}{3}\pi r^3$
Hemisphere	$2\pi r^2$	$3\pi r^2$	$\frac{2}{3}\pi r^3$

8. Solved Examples with Step-by-Step Reasoning

Ex 1 (Cuboid): $l = 15 \text{ cm}$, $b = 10 \text{ cm}$, $h = 6 \text{ cm}$. Find TSA, volume.

- Pairs: $lb = 150$ ($\times 2 = 300$), $bh = 60$ ($\times 2 = 120$), $hl = 90$ ($\times 2 = 180$).
- $\text{TSA} = 300 + 120 + 180 = 600 \text{ cm}^2$.
- $\text{Volume} = 15 \times 10 \times 6 = 900 \text{ cm}^3$. *Reason: Multiplies dimensions for space.*

Ex 2 (Cylinder, Open Top): $r = 7 \text{ cm}$, $h = 10 \text{ cm}$.

- $\text{TSA} = \text{CSA} + 1 \text{ base} = 2\pi \times 7 \times 10 + \pi \times 49 = 440\pi + 49\pi = 489\pi \text{ cm}^2$. *Hidden: No top base.*

Ex 3 (Cone): $r = 4 \text{ cm}$, $h = 3 \text{ cm}$.

- $l = \sqrt{16 + 9} = 5 \text{ cm}$.

- Volume = $\frac{1}{3}\pi \times 16 \times 3 = 16\pi \text{ cm}^3$. *1/3 factor from averaging cross-sections.*

Ex 4 (Composite): Cone (r=5 cm, h=12 cm) + hemisphere (r=5 cm).

- $l = \sqrt{25 + 144} = 13 \text{ cm.}$
- $\text{TSA} = \text{cone CSA} + \text{hemisphere TSA} = \pi \times 5 \times 13 + 3\pi \times 25 = 65\pi + 75\pi = 140\pi \text{ cm}^2$ (base hidden).
- Volume = $\frac{1}{3}\pi \times 25 \times 12 + \frac{2}{3}\pi \times 125 = 100\pi + \frac{250}{3}\pi$. *Add capacities.*

Ex 5 (Advanced): Sphere melted into cone (same r,h). Volumes equal

$$\rightarrow \frac{4}{3}\pi r^3 = \frac{1}{3}\pi r^2 h \rightarrow h = 4r. \text{ Proves shape transformation conservation.}$$

9. Common Errors and Fixes

- Error: Wrong slant height → Fix: Always Pythagoras.
- Error: Double bases in composites → Fix: Visualize hidden parts.
- Error: Unit mismatch → Fix: Convert pre-calculation.

10. Practice Mastery Drills

1. A cylinder and a cone have the same base radius and height. If the curved surface area of the cylinder is 154 cm^2 , find the curved surface area of the cone.

2. The radius of a sphere is doubled. By what factor does its volume increase?
3. A solid metal cube of edge 6 cm is melted and recast into a sphere. Find the radius of the sphere.
4. A cone has height 12 cm and slant height 13 cm. Find its total surface area if its radius is doubled.
5. A cylindrical pipe has outer radius 7 cm and inner radius 5 cm. Find the volume of material used in 20 cm length of the pipe.

Benefits of StudyBee for Students

- Expertly crafted notes detailed enough for deep understanding.
- Over 1000 students have achieved 20% grade improvement.

www.studybee.tech

- Instant downloadable PDFs and mobile-friendly materials.
- Exclusive practice quizzes tailored to the latest CBSE syllabus.
- Visit www.studybee.tech for the best academic resources.